3.76 \(\int \frac{2 x^2+x^4}{1+x^3} \, dx\)

Optimal. Leaf size=43 \[ \frac{x^2}{2}+\frac{1}{2} \log \left (x^2-x+1\right )+\log (x+1)+\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{\sqrt{3}} \]

[Out]

x^2/2 + ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3] + Log[1 + x] + Log[1 - x + x^2]/2

________________________________________________________________________________________

Rubi [A]  time = 0.078164, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.471, Rules used = {1593, 1887, 1874, 31, 634, 618, 204, 628} \[ \frac{x^2}{2}+\frac{1}{2} \log \left (x^2-x+1\right )+\log (x+1)+\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(2*x^2 + x^4)/(1 + x^3),x]

[Out]

x^2/2 + ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3] + Log[1 + x] + Log[1 - x + x^2]/2

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1887

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^n), x], x] /; FreeQ[{a, b}, x
] && PolyQ[Pq, x] && IntegerQ[n]

Rule 1874

Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
 2], q = (a/b)^(1/3)}, Dist[(q*(A - B*q + C*q^2))/(3*a), Int[1/(q + x), x], x] + Dist[q/(3*a), Int[(q*(2*A + B
*q - C*q^2) - (A - B*q - 2*C*q^2)*x)/(q^2 - q*x + x^2), x], x] /; NeQ[a*B^3 - b*A^3, 0] && NeQ[A - B*q + C*q^2
, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2] && GtQ[a/b, 0]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{2 x^2+x^4}{1+x^3} \, dx &=\int \frac{x^2 \left (2+x^2\right )}{1+x^3} \, dx\\ &=\int \left (x+\frac{x (-1+2 x)}{1+x^3}\right ) \, dx\\ &=\frac{x^2}{2}+\int \frac{x (-1+2 x)}{1+x^3} \, dx\\ &=\frac{x^2}{2}+\frac{1}{3} \int \frac{-3+3 x}{1-x+x^2} \, dx+\int \frac{1}{1+x} \, dx\\ &=\frac{x^2}{2}+\log (1+x)-\frac{1}{2} \int \frac{1}{1-x+x^2} \, dx+\frac{1}{2} \int \frac{-1+2 x}{1-x+x^2} \, dx\\ &=\frac{x^2}{2}+\log (1+x)+\frac{1}{2} \log \left (1-x+x^2\right )+\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x\right )\\ &=\frac{x^2}{2}-\frac{\tan ^{-1}\left (\frac{-1+2 x}{\sqrt{3}}\right )}{\sqrt{3}}+\log (1+x)+\frac{1}{2} \log \left (1-x+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0124251, size = 54, normalized size = 1.26 \[ \frac{1}{6} \left (3 x^2-\log \left (x^2-x+1\right )+4 \log \left (x^3+1\right )+2 \log (x+1)-2 \sqrt{3} \tan ^{-1}\left (\frac{2 x-1}{\sqrt{3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(2*x^2 + x^4)/(1 + x^3),x]

[Out]

(3*x^2 - 2*Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] + 2*Log[1 + x] - Log[1 - x + x^2] + 4*Log[1 + x^3])/6

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 38, normalized size = 0.9 \begin{align*}{\frac{{x}^{2}}{2}}+{\frac{\ln \left ({x}^{2}-x+1 \right ) }{2}}-{\frac{\sqrt{3}}{3}\arctan \left ({\frac{ \left ( 2\,x-1 \right ) \sqrt{3}}{3}} \right ) }+\ln \left ( 1+x \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+2*x^2)/(x^3+1),x)

[Out]

1/2*x^2+1/2*ln(x^2-x+1)-1/3*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))+ln(1+x)

________________________________________________________________________________________

Maxima [A]  time = 1.40092, size = 50, normalized size = 1.16 \begin{align*} \frac{1}{2} \, x^{2} - \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{2} \, \log \left (x^{2} - x + 1\right ) + \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+2*x^2)/(x^3+1),x, algorithm="maxima")

[Out]

1/2*x^2 - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/2*log(x^2 - x + 1) + log(x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.55632, size = 120, normalized size = 2.79 \begin{align*} \frac{1}{2} \, x^{2} - \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{2} \, \log \left (x^{2} - x + 1\right ) + \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+2*x^2)/(x^3+1),x, algorithm="fricas")

[Out]

1/2*x^2 - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/2*log(x^2 - x + 1) + log(x + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.123992, size = 44, normalized size = 1.02 \begin{align*} \frac{x^{2}}{2} + \log{\left (x + 1 \right )} + \frac{\log{\left (x^{2} - x + 1 \right )}}{2} - \frac{\sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3} x}{3} - \frac{\sqrt{3}}{3} \right )}}{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+2*x**2)/(x**3+1),x)

[Out]

x**2/2 + log(x + 1) + log(x**2 - x + 1)/2 - sqrt(3)*atan(2*sqrt(3)*x/3 - sqrt(3)/3)/3

________________________________________________________________________________________

Giac [A]  time = 1.08713, size = 51, normalized size = 1.19 \begin{align*} \frac{1}{2} \, x^{2} - \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{2} \, \log \left (x^{2} - x + 1\right ) + \log \left ({\left | x + 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+2*x^2)/(x^3+1),x, algorithm="giac")

[Out]

1/2*x^2 - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/2*log(x^2 - x + 1) + log(abs(x + 1))